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Abstract-The model two-wave equation for weakly nonlinear long waves on a liquid film moving along 
an inclined plane under the e@ct of gravity and gas flow is derived on the basis of an integral approach. 
The linear stability of a liquid film flowing concurrently or countercurrently with a gas stream is studied 
over a wide range of regime parameters. It is found that the dispersive curve has two branches which 

interact with one another under certain conditions. 

1. lNTRODlJCllON 
The combined motion of a laminar liquid film and 
turbulent gas is considered as one of the fundamental 
regimes of two-phase flows. The peculiarity of gas- 
film flows is the interface instability which results in 
the formation of nonlinear waves that essentially 
influence the drag and heat and mass transfer. Until 
now the problem of describing the wave motion of the 
liquid film in the presence of a gas flow is far from 
complete in spite of a large number of studies [l-5]. 
The basic reasons for this are as follows : a wide variety 
of wavy regimes ; a predominantly nonlinear character 
of waves ; the complexity of setting the boundary con- 
ditions on the curvilinear interface allowing for tur- 
bulence in a gas phase. 

Most theoretical studies are devoted to the linear 
analysisofinstability on the basis of the Orr-Sommer- 
feld equation ]6--91. The major attention is given to 
the probiem of determining the stresses which are 
caused by a turbulent gas flow on a liquid film surface. 
The possibility for the study of nonlinear wave for- 
mation has arisen rather recently owing to the devel- 
opment of the numerical methods [lo, 111. 

For such complicated systems as liquid films with 
gas flows the model wave equations are of great 
importance. In spite of limitations, they have sig- 
nificant advantages connected with the relative sim- 
plicity and convenience of mathematical treatment. 
The most complete analysis of the model equations 
for a falling tim is presented in the monograph by 
Alekseenko et al. [4]. 

In this work the model two-wave equation for 
weakly nonlinear long waves on a liquid film moving 
along an inclined plane under the effect of gravity and 
the gas flow is derived on the basis of the integral 
approach. The equation is valid over a wide range of 
film parameters. In the limiting and particular cases it 
transforms to the known wave equations. The linear 

analysis of film stability is carried out for both vertical 
and horizontal gas-liquid Bow. 

2. UNPEWD sCBI.UllOfdS FDR TME 
MOMENWM TRAMSHSR EQUATtOBJS 

First we consider a steady-state flow of a smooth 
laminar liquid film in the presence of a gas flow. The 
effect of the gas is taken into account through the 
given values of shear t, and normal ps stress on a free 
surface. The Navier-Stokes equations and boundary 
conditions are written as follows : 

---++vt(+g*sin8=0 
lap * 

P ax ay2 

_lap-g.cos(&() 
P 8Y 

u = 0 when y = 0 

p=PsW; +=is when y = h. 

Here p is the liquid density, v, p are the kinematic 
and dynamic coefficients of viscosity, g is the free fall 
acceleration, h is the film thickness, u is the longi- 
tudinal velocity, p is the pressure, x and y are the 
Cartesian coordinates, 8 is the angle of fihn flow incli- 
nation. The most general case is considered when the 
velocity vectors of liquid and gas are both in positive 
and negative directions of the x-axis in an arbitrary 
combination, 

From the second equation we have the hydrostatic 
distribution of pressure across the film : 

PO = PSOW + pg * @II -Y> * cm 0. 

With allowance for this expression and the boundary 
conditions, the parabolic velocity profile follows from 
equation (1) : 
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NOMElUClATURE 

A B D F coefficients, equation (23) 
c 

co 
Cl c2 

f 

Fi 
Fr 

g 
h 
H 

j 
k 
IL 
m 

no-n9 

P 
PS ” 8 
PsRPsl 

4 

phase velocity 
velocity of kinematic wave 
velocities of dynamical waves 
= u/U, dimensionless velocity 
= 03/p3gv4, film number 
= glcosOlhi/q$, Froude number 

acceleration of gravity [m s-‘1 
film thickness [m] 
perturbation of the film thickness 
coefficient 
= 2nh,/l, wave number 

scales of length [m] 
coefficient 

Q 
r 
Re 
t 
T 
TM 

coefficients, equation (34) 
pressure in the liquid [pa] 
gas pressure at the interface 
amplitudes of pressure perturbations 

flow rate of the liquid per unit width 
of a film [m’ s-l] 
perturbation of the liquid flow rate 
parameter 
= 1 go ( /v, Reynolds number 

time [s or dimensionless] 
shape factor 
= (rSo/p) * (3/gv)“‘, gas stream 

parameter 
u liquid velocity [m s- ‘1 
U, average velocity of the liquid [m s-‘1 

u liquid velocity at the interface 
We = oh,/pqi, Weber number 

X longitudinal coordinate [m or 
dimensionless] 

Y transverse coordinate [m]. 

Greek symbols 

; 
shape factor, equation (3) 
increment (growth rate factor) shape 
factor, equation (4) 

E = h/L, long-wave parameter 

:: 
= y/h, dimensionless coordinate 

inclination angle of the film flow [rad] 

; 
perturbation of the shape factor x 
wavelength [m] 

P viscosity [kg m-’ s-‘1 
V kinematic viscosity [m2 SC’] 
P liquid density [kg mm31 
0 surface tension [kg m s-‘1 
z shear stress m m-‘1 
r, shear stress at the interface 
fSR fS, amplitudes of the shear stress 

perturbations 
X shape factor, equation (5). 

Subscripts 
S interface 
W wall 
0 unperturbed value. 

u. = ho + do sin 0 -ho * dpsolW 
P 

Y 

(pg sin 0 - dp,/dx) - 
2P 

Y2. (3) 

Hereafter unperturbed quantities will be denoted by 
subscript ‘0’. We shall also write out some useful 
relations : 

h0 go S 
s 

u 
0 

dy _ zsohi I @gsin e-dpsolW h3 

2P 3P 
0 (4) 

0 

zsoho u,, = UOly=,,, = - 
+ @s sin TV - dp,olW h2 

2/J 0 
P 

(5) 

au 3P30 Go 
Lo=PU1’p=o=~-~ (6) 

where go is the flow rate per unit of film width, U, is 
the surface velocity, rti is the wall shear stress. 

It is convenient to represent velocity profile (3) in 
dimensionless form excluding gravity and the pressure 
gradient using relation (5) : 

?= (2-T,)c+(T,--1);. (7) 
0 0 0 

To = do/W,. (8) 

In contrast to the failing liquid film, the allowance for 
stress on a free surface leads to a non-self-similar 
velocity profile. The quantity To plays the role of the 
shape factor. Expression (8) can be written alter- 
natively using relations (4)-(6) or the relation between 
shear and normal stresses which foliows from the solu- 
tion of the problem for the gas phase. 

The obtained solutions may be simplified if one 
takes into account that in practice, the combined flow 
of liquid and gas is usually realized in a channel of 
height E >> h. Then the force balance 22, x -1 dp,/dx 
gives the condition : 

With allowance for equation (9), equation (4) takes 
the form : 

di? wineh3, 
40 = 2p+ 3p 0 (10) 

This equation serves to determine the unperturbed 
thickness ho from the given values of flow rate q. and 
shear stress zSo. Here 
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3. UMTECFW. EQUATIONS 

We consider nonlinear long waves on the interface 
assuming the wavelength ,I >> h. As is shown [2,4, 12, 
131, the application of the integral correlation method 
is justified for a film at moderate Reynolds numbers 
and in the long-wave approximation. This method 
consists of writing the boundary layer equations with 
allowance for a free surface and integrating them 
across the film thickness. To solve the integral equa- 
tions, it is necessary to use certain assumptions for 
the instantaneous velocity profile. So, in the case of 
weakly nonlinear quasi-stationary waves on a free 
falling liquid film, the velocity profile is approximated 
by the self-similar polynomial of degree 2. For gas- 
liquid flow significant difficulties arise connected with 
the allowance for the non-self-similarity of the instan- 
taneous velocity profile. 

In the case of the usually accepted statement [2, 31, 
the gas and liquid flows may be considered separately. 
Then the main problem is to determine boundary con- 
ditions at the perturbed interface. Here we are inter- 
ested mainly in the liquid flow. Because of this, the 
boundary conditions at the interface are given on the 
basis of known theories (quasi-laminar [lo, 111 and 
relaxation [ 141 models). 

We write out immediately the two-dimensional inte- 
gral equations for the prablem under consideration 
using the results [4, 131 for a falling film : 

- E g -gh~cose+ghcose+ $2 (11) a4 2~ aq 42 ax 
3-t+hqax+hiG 

z+$ hUdy=O. 
s 0 

(12) 

The only difference from a falling film is that the 
additional terms, i.e. shear stress z, and pressure gradi- 
ent, appear in the right-hand side of equation (11). 
Here TV, tw, ps, h as well as local flow rate q = $ udy, 
averaged over thickness velocity u, = q/h and surface 
velocity U, are functions of coordinate x and time t. 

So far we have not yet determined instantaneous 
velocity distribution, but we give it by nondimensional 
coefficients, putting 

f= u/U, r/ = y/h. 

Then we have the following relations : 

u = 
s 

‘j-dq = q/hU = u,/U (13) 
0 

(14) 
Jo 

1 h s B 
x=hu,z o u’dy=-. 

u2 
(15) 

Assume that the dimensionless local velocity dis- 

tribution is described by expression (7) which takes 
the form in accepted designations 

f = (2-T)f,I+(T-l)~2. (16) 

This distribution is not self-similar, therefore the 
quantities CI, /3. x will depend on T = T(x, t). 

Hereafter we shah use dimensionless quantities. For 
this, the following scales are introduced: (qo(, ho, 
uzo = (qo(/ho, where index ‘0’ denotes the unperturbed 
values. Let us use dimensionless quantities as follows : 

x/ho + x y/ho + Y %/ho --+ t 

h/ho -+ h u/u,0 -+ u 

P/puZo -+P .s/pu:o -+ z q/l401 -+ 4. 

We introduce also the nondimensional numbers : 

Reynolds number Re = )qo j/v, 

Froude number Fr = g(cos 6(ho/uzo, 

Weber number We = a/ph&zo, 

Instead of the Weber number, the film number 
Fi = a3/p3gv4 is often used. As is well known, the 
boundary layer approach is valid at Re N l/e >> 1, 
where E = ho/L << 1, length scale L N i. However it is 
noted in refs. [4, 131 that in the case of long-wave 
processes in a liquid film, equations (11) and (12) may 
be applied for a wider range of Reynolds numbers : 
I < Re < I/E’. 

Then the integral equations are written in non- 
dimensional form as 

_ !i+$ = r,-T,-h%!t 
ax 

-m*Fr*hg+mFrhtanO+ We-h2 (17) 

;+f$o. (18) 

Here m = cos &l/lcos 81. 
Information on the velocity distribution is con- 

tained in the quantity x = X(X, t), which may be con- 
sidered as a shape factor and which is designated by 
f in 121. The shear stress r, is also determined by the 
instantaneous velocity profile. However in the quasi- 
equilibrium approximation we exclude z, similar to 
ref. [15] by application of equilibrium relation (6) 
written in dimensionless form : 

z, = 3q/h’Re--tJ2. (19) 

The system of nonlinear nonstationary equations for 
local values of flow rate q and thickness h is solvable 
when free surface stresses r&c, t) and&, t) are given 
and the velocity profile in a film (or shape factor 
x(x, t)) is also determined. 
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We consider the weakly nonlinear waves assuming 

h=l+H q=j+Q x=x0+x (20) 

where perturbations (HI, ]Ql << 1, 1 ICI << xo, 
j = qo/lqol. If the flow rate is given as that in the 
experiment, then the average value of flow rate per- 
turbation <Q) = 0, whereas (H) # 0 and (K) # 0 
owing to the nonlinearity of the process. 

The interface stresses may be represented according 
to [2] as follows : 

z, = zs,, + r: = rso + fssRH+ z^,,H, (21) 

ps = PRO +P: = pso +Bs~H+i4,Hx. (22) 

Here H, = aHlax and ?*a, 2^,,, fisR, jiSr are the ampli- 
tudes of shear stress and pressure perturbations at the 
interface. Such representation is possible in the case 
of a linear response of the gas phase to an interface 
perturbation that is the commonly accepted assump- 
tion [2, 10, 111. In the given case the coefficients in 
equations (21) and (22) will be considered to be known. 
The methods of their calculation are given, for 
example, in refs. [lo, 11, 141. It is extremely important 
to note that the effect of a gas on the film stability 
appears mainly owing to a change of stresses along 
the perturbed interface. Expansions (21) and (22) are 
convenient to use for the derivation of model equa- 
tions as well as for the interpretation of film insta- 
bilities caused by gas flows. Note that the expansions 
of r, andp, are written out in equations (21)-(22) with 
respect to the unperturbed values. Hanratty [2] has 
performed such a procedure with respect to the mean 
values. These differences are of no significance for 
weakly nonlinear waves. 

We multiply equation (17) by h2. Then leaving the 
quadratic nonlinearity alone and taking into account 
equation (19) we get 

Q,+2j~oQX+~,-AHX-BH+3Q/Re 

+BsE H,, - WeH,,, = - 2HQ, - 2jKQX 

- 2xoQQX - 2jxoHQX - 2jQ% - HG + KH, 

+ 2jQHXxo + DH’ + FHH, - 3@,, HH, + 3 WeHH,,, 

(23) 

where 

A = x0 +3f,,/2-&-m* Fr 

B=?f +9j_!, 
2 sR Re 2 * 

D=3(f,,+L ) 
Re So 

F = 3(&, -bsR -m * Fr). 

Here it is taken into account that for unperturbed 
values 

(24) 

From equation (18) it follows 

h,+Q, = 0. (25) 

We shall reduce system (23)-(25) to one equation 
for H. For this, we differentiate equation (23) with 
respect to x and eliminate QX using equation (25). 
The quantity Q in nonlinear terms is eliminated by 
application of the approximated (quasi-stationary) 
relation 

Q = cH, (26) 

where c is the phase velocity which is a weakly 
changing function for quasi-stationary processes. 

Expression (26) follows from equation (25) under 
the condition 

a a 
at=-% (27) 

and it is exact for stationary waves. It turns out that 
the phase velocity c arises in the right-hand side of 
equation (23) in combination with a/ax only. There- 
fore the operator calax is replaced inversely by 
(- a/at) according to equation (27). This approximate 
procedure is fulfilled only for the nonlinear terms 
which have a higher infinitesimal order compared to 
the linear terms. 

As a result one equation is obtained 

- [H,, +2jxoH, + AH,, + 3HJRe 

+ BH, -i%HXxX - K, f WeH,,,I = 2(1- xo)(HH,), 

+ 2j(KH),, + (KHJ, - (HK,), + 2HHJ 

+ F(HHJ, - 3/b (HH,,), + 3 We(HH,,J,. (28) 

However it contains two functions-perturbations of 
thickness H and shape factor K. The next step is to 
express the quantity K through H. To do this, it is 
necessary to make an assumption for velocity dis- 
tribution in a liquid film. In the approximation of local 
quasi-equilibrium, the instantaneous velocity profile is 
described by parabolic polynomial equation (16) 
which is nonself-similar owing to the allowance for 
interface stress. Then the expression for the local value 
of shape factor x follows from equations (13)-( 15) : 

x=$1+&] 
where 

T = 4/(1 +6q/Rez,h2). (30) 

The last formula is obtained from functional relations 
(8), (4) and (5) rewritten in dimensionless form for 
instantaneous values. Thus the index zero is omitted. 

Now we assume 

X=Xo+K T= T,+T’. (31) 

Here K and T’ are the perturbations of shape factors. 
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Unperturbed quantities with allowance for equation the first approximation by the differential equation of 
(20) have the form : the first order : 

xo = W+ T,JP”o -4)‘lP (32) 

To = 4/(1+6/j&-r,,). (33) ( > ;+c,; H=O. 

Using rather cumbersome transformations we find But at high flow rates (Re >> 1) the dynamical waves 

from equations (29)-(33), (20) and (21) in the dominate which are described by the derivatives of 

approximation of quadratic nonlinearity the func- the second order : 

tional relation 

k = K-(Q, ff, Hx). 

Substituting this expression into equation (28) and Equations of a two-wave nature and their peculiarities 
leaving only quadratic terms we eliminate Q the same are discussed by Whitham [ 17). 
way as in the deduction of equation (28). As a result For a vertical film a two-wave equation has been 
we obtain one equation for the perturbation of film derived first by Alekseenko et al. [ 161 and Nakoryakov 
thickness H: and Alekseenko [18] for an inclined tilm flow. For the 

horizontal film entailed by gas flow, the two-wave 
equation has been obtained by Jurman and McCready 
[ 151. In the limiting and particular cases equation (34) 

+ no H,,, + WeH,, = n,HH,+n,(HH,), 
transforms to the known equations [12, 15, 16, 181. 
Hence, it is the most general model equation describ- 

+n,(HHd,+n,(HHJx+n,HxHx,+n,HHx,, ing the weakly nonlinear long waves in a liquid film 

+n,(HH,),,+n,(H,~H,,),+n,(HH,,,), (34) 
moving along an inclined plane under the effect of 
gravity and gas flow. Note that surface stresses is 

which describes two-dimensional long weakly non- taken more correctly into account as compared to ref. 
linear nonstationary waves on the surface of a liquid [I 51. In ref. [ 151 the velocity profile is considered to be 
tim moving along an incline plane under the effect of 
gravity and gas flow. Here 

1.0 , I 
co = 3j+ Re(z^,a - 2,)/2 (35) 

c,,~ = (1.2j+Re*r,o/40)+_{(1.2j+Re-2,/40)* 

- 1.2 +mFr +& - 37^,,/2 + Re - qo(2Re * fssR 

+ 3Re - zso f6j-t 6CIjlr,,)/120} ‘I* (36) 

no = --a,, - Re * fs, (Re * z,,, + 3j)/60, 0.4 

n, = 6(2,, - fsR - 3j/Re) 
0.2 

n, = 3@,a + mFr - fsI) + Re[Re(6rzo + 8fssRq0 

+ ?sk) + 6jz, + 12j&J/60 

n3 = 0.4 n4 = -0.1 *Re(2z,,+t,,) 

n, = 3~,~+Re~~~,(11Re~z,+3Re~~~,,+15j)/60 

0.0 

-0.2 4 
0.0 0.2 0.4 0.8 0.8 1.0 

k 
n6 = 3& + Ref,,(SRe * xso + Re - & + 9j)/60 

n, = -Re.fs,/20 n, = (Re*2^,,)*/60, 

n, = -3We. 

As is seen, the determining characteristic parameters ---_, 

of the problem are: film Reynolds number Re, film 
Weber number We, film Froude number Fr and the 
unperturbed shear stress TV,,. The stress variation on -4.0 - 
the interface is taken into account through the given 
coefficients & z^,r, asR and a,,, which may be deter- 
mined, for example, according to refs. [lo, 11, 141. 0.0 0.2 0.4 0.6 0.8 1.0 

Equation (34) has a two-wave structure. This means k 
that at small Reynolds numbers Re N 1 the wave pro- Fig. 1. Dispersion curves for vertical gas-film flow (air- 
cess is based on the kinematic wave. It is described in -- _,/.. _ water) ; Re = 20 ; FP” = 9.164. 



2132 S. V. ALEKSEENKO and V. E. NAKORYAKOV 

r=2 (4 

7.5 
C 

5.0 

2.5 

0.0 

-2.6 

-5.0 

-7.5 

k 

__---___ 
--._ 2 (b) 

.-._ -..._ -. --_. 

r=2 

I , I I I I 
0.0 0.2 0.4 0.8 0.8 1.0 

k 

0.3 , I 
B 

0.2 
r=-0.8 

-0.3 

-o.40) 
0.2 0.4 0.8 0.8 1.0 

k 

7.5 
C 

5.0 

2.5 

0.0 

-2.5 

-5.0 

,,----._ 
2 (d) I , -.._ 

.-._ 
. . . . 

.-._ 
r=-0.8 --._ -. 

-7a60:o 1.0 
k 

0.2 0.4 0.8 0.8 1.0 
k 

7.5 
C 

5.0 

2.6 

0.0 

-2.5 

-5.0 

-7.6 I I 1 I 1 I 
0.0 0.2 0.4 0.6 0.8 1.0 

k 

0.3 , I 
B r=-1 0.2 (d - 

0.1 - 

0.0 - 

-0.1 - I.. ----_____________--- 
\ 

-0.2 - ‘\\ : 
\ :2 \ 

-0.3 - tl,,_:: 

-0.4 / 
0.0 0.2 0.4 0.8 0.8 1.0 

k 

7.5 
C 

5.0 

-5.0 

-7.6 -c I 6 1 I 
0.0 0.2 0.4 0.8 0.8 1 

k 
1 

Fig. 2. Full dispersion curves for vertical gas-film flow (air-water) ; Re = 20 ; Fi”” = 9.164 ; 1,2 = 1st and 
2nd wave modes. 
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self-similar. However this is valid only for the limit of 
small stress on the interface which is of no interest for 
the problem on a gas-film flow. If we put 0 = 0 and 
neglect perturbations of shape factor K in equation 
(23) that is true for the self-similar profile, then the 
resulting equations in the present study and [15] 
coincide identically. 

5. LINEAR ANALYSIS OF FILM STABILITY 

The more precise data on the linear stability of 
film flow may be obtained from the Orr-Sommerfeld 
equation [2]. However, we assume it necessary to carry 
out the linear stability analysis on the basis of the 
derived equation because only the integral approach 
is used for calculations of nonlinear waves in a film 
sheared by gas Row [lo]. 

Representing the film thickness perturbation in the 
form H N exp [ik(x - ct) + /?t] and substituting this 
expression into the linearized wave equation (34) we 
obtain the dispersion relations : 

pi-k’[c2-jc,c2c+j(c,+cZ)]+g+IVek4 =O. 

(38) 

Here k is the wave number, c is the phase velocity, /I 
is the increment. The neutral curve is defined by the 
condition : /I = 0. To solve the dispersion relations the 
pressure and shear stresses at the interface must be 
given. In this paper, such data are taken from ref. [ 111, 
where the quasi-laminar model was used. Abrams and 
Hanratty [14] have suggested the relaxation model 
which is more acceptable to describing the interfacial 
stresses than the quasi-laminar one. However, these 
theories yield results that do not significantly dis- 
tinguish themselves in the range of wave numbers 
used. According to the above models the amplitudes 
of stress perturbations &, fS,, dsR, &, are the functions 
of a wave number. Therefore equations (37)-(38) can 
only be solved numerically. 

The dispersion curves for vertical gas-liquid flow 
are presented in Fig. 1. The influence of the gas 
stream is taken into account by the parameter r = 
Re * zo/( 1 - 0.5Re + z,,). This parameter is more 
convenient than r& because it defines the direction of 
film flow as follows : r > - lS--downward flow ; 
- 3 < r < - 1 S-downward flow near the wall and 
upward flow near the interface ; r < -3-upward 
flow. If r = 0 the effect of the gas is absent. It follows 
from the figures that a gas stream always decreases 
the film stability. The straight line asymptotes for 
phase velocity c at large k correspond to the capillary 
waves in shallow water (Fig. 1 b). 

The peculiarity of the dispersion curves is their 
unexpected change at some value of r. More detailed 
calculations explain such behaviour. Every dispersion 

B 
0.25 

0.20 

0.15 

0.05 

0.00 

-0.05 
0.00 0.10 o.io 0.30 0.40 0.60 

k 

Fig. 3. Growth rate factor B for liquid film sheared by tur- 
bulent gas flow along the upper side of a horizontal plane 

(air-water) ; IV” = 9.164. 

curve has two branches which describe different wave 
modes. 

At large or small r, the branches of (/I-k)-depen- 
dencies are separated (Fig. 2a, g); in doing so the 
lower branches correspond to strongly decaying dis- 
turbances which are not of interest for the problem of 
film instability. However, starting with some value of 
r, the intersecting branches of (/I - k)-dependencies 
occur (Fig. 2~). With the decreasing parameter r, when 
critical value is achieved, the branches of the dis- 
persion curves exchange their portions (Fig. 2c-h). 
As a consequence, the curves accept an unexpectedly 
complicated shape (Fig. 2g-h). The critical value of r 
is defined by the conditions under which the branches 
of (/I-k)-dependence have the same inclination angle 
at the intersection point or the branches of (c-k)- 
dependence touch one another without intersecting. 
The described behaviour of curves means that it is 
necessary to account for both branches of the dis- 
persion curves. A similar problem does not appear for 
a free falling film when the dispersion curve 
branches never intersect [4]. 

A detailed analysis of film instability over a wide 
range of parameters where the integral theory is valid 
does not enter into the scope of our paper. We still 
consider several examples useful for an illustration of 
the fields of application and for confirmation of the 
theory. 

Figure 3 shows the growth rate factor /I vs the 
wave number k in the case of a horizontal film sheared 
by the turbulent gas. Here the gas flow parameter 
TM is defined as TM = za(3/gv)2’3/p. The parameter 
r makes no sense since its value tends to infinity for a 
horizontal flow. As is seen, a film flow may be stable 
at a small value of shear stress in contrast to the 
vertical gas-film flow. The calculations for the neutral 
curves and the maximum-growing waves are also car- 
ried out. The comparison of the obtained results with 
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0.12 , I 

Re=lO 

0.04 - 

0.02 - 

0.00 - 

-0.02 1 I I I I 1 
0.00 0.10 0.20 0.30 0.40 0.50 

k 

Fig. 4. Growth rate factor /3 for liquid film sheared by tur- 
bulent gas flow along the lower side of a horizontal plane 

(air-water) ; Fz”“’ = 9.164. 

Eqa. (37)-(38) 
_-__ R-T 

0.01 0 1II3, 1 
1 10 Rn 

Fig. 5. Neutral curves for liquid film sheared by turbulent 
gas flow along the lower side of a horizontal plane (air- 

water) ; I?“’ = 9.164. 

computations [ 1 l] on the basis of the Orr-Sommerfeld 
equation shows good agreement over the range of 
small wave numbers. 

The dispersion curves for a film moving along the 
lower side of a horizontal plane are presented in Fig. 
4. Contrary to a flow on the upper side (Fig. 3), 
here the film flow is always unstable and the effect of 
parameter TM on the instability is nonmonotonic. It 
is interesting to compare the viscous film instability in 
the presence of a gas stream with the Rayleigh-Taylor 
one (R-T). Such a comparison is made in Fig. 5 where 
neutral curves are shown. It follows from this figure 

that R-T instability occurs in the range of small values 
of Re and TA4( TM = 0.05, Re < 5). If the shear stress 
is suliiciently large (TM = l), the gas stream has a 
destabilizing effect on the film instability at Re > 15, 
and opposite action at Re < 15. 

The obtained results demonstrate the possibility of 
applying the two-wave equation to modelling linear 
and nonlinear waves on a liquid film moving under 
the effect of gravity and turbulent gas flow over wide 
range of conditions. 
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